Exponent Rules

The Product Rule for Exponents

 (Multiplying Like Bases With Exponents)When you multiply like bases you add your exponents.

$$
\begin{aligned}
& x^{n} \cdot x^{m}=x^{n+m} \\
& 2^{3} \cdot 2^{5}=2^{3+5}=2^{8} \\
& w^{2} \cdot w^{3}=w^{5}
\end{aligned}
$$

Quotient Rule for Exponents
 (Dividing Like Bases With Exponents)

When you divide like bases you subtract their exponents.

$$
\begin{gathered}
a^{m} \div a^{n}=a^{m-n} \\
7^{5} \div 7^{2}=7^{5-2}=7^{3} \\
2^{2} \div 2^{5}=2^{2-5}=2^{-3}=\frac{1}{2^{3}}=\frac{1}{8}
\end{gathered}
$$

Power of a Power Rule for Exponents
 (Base Raised to Two Exponents)

When you raise a base to two exponents, you multiply those exponents together.

$$
\begin{gathered}
\left(a^{m}\right)^{n}=a^{m \times n} \\
\left(a^{5}\right)^{2}=a^{5 \times 2}=a^{10} \\
\left(2^{2}\right)^{-3}=2^{2 \times-3}=2^{-6}=\frac{1}{2^{6}}=\frac{1}{64}
\end{gathered}
$$

Power of a Product Rule for Exponents (A Product Raised to an Exponent)

When you have a PRODUCT (not a sum or difference) raised to an exponent, you can simplify by raising each base in the product to that exponent.
$(a b)^{m}=a^{m} b^{m} \quad\left(2 x^{2}\right)^{3}=2^{3} x^{6}=8 x^{6}\left(2 x^{2}\right)^{-3}=2^{-3} x^{-6}=\frac{1}{2^{3} x^{6}}=\frac{1}{8 x^{6}}$

Power of a Quotient
 (A Quotient Raised to an Exponent)

When you have a QUOTIENT (not a sum or difference) raised to an exponent, you raise each base in the numerator and denominator of the quotient to that exponent.
$\left(\frac{a}{b}\right)^{n}=\frac{a^{n}}{b^{n}}$
$\left(\frac{x^{5}}{y^{2}}\right)^{3}=\frac{x^{15}}{y^{6}}$
$\left(\frac{2^{3}}{4}\right)^{2}=\frac{2^{6}}{4^{2}}=\frac{64}{16}=4$

Zero Exponents

Any base raised to an exponent of 0 has a value of 1 .

$$
a^{0}=1 \quad 100^{\circ}=1 \quad 5 x y z^{0}=5 x y \quad(5 x y z)^{0}=1
$$

Negative Exponents

A base raised to a negative exponent has the same value as the reciprocal of the base to the positive of the exponent.
$a^{-4}=\left(\frac{1}{a}\right)^{4}=\frac{1}{a^{4}} \quad 10^{-4}=\left(\frac{1}{10}\right)^{4}=\frac{1}{10^{4}} \quad\left(\frac{2}{3}\right)^{-2}=\left(\frac{3}{2}\right)^{2}=\frac{3^{2}}{2^{2}}=\frac{9}{4}$

