Name: \qquad Grade: \qquad Date: \qquad

Parallel and Perpendicular Lines

Q 1 : Find the slope of the line passing through the pairs of points and describe the line as rising, falling, horizontal or vertical.
a. $(2,1),(4,5)$
b. $(-1,0),(3,-5)$
c. $(2,1),(-3,1)$
d. $(-1,2),(-1,-5)$

Q2: Determine whether the graphs of each pair of equations are parallel, perpendicular or neither.

1. $y=3 x+4$
2. $y=-4 x+1$
$y=3 x+7$
$4 y=x+3$
3. $y=2 x-5$
4. $y=-1 / 3 x+2$
$y=5 x-5$
$y=3 x-5$
5. $y=3 / 5 x-3$
$5 y=3 x-10$
6. $y=4$
$4 y=6$
7. $y=5 / 6 x-6$
$x+5 y=4$
8. $\begin{array}{r}y=7 x+2 \\ x+7 y=8\end{array}$

Q3: Write the equation in slope-intercept form of the line that is parallel to the graph of each equation and passes through the given point.

1. $y=3 x+6 ;(4,7)$
2. $y=x-4 ;(-2,3)$
3. $y=1 / 2 x+5 ;(4,-5)$
4. $y+2 x=4 ;(-1,2)$

Q4: Write the equation in slope-intercept form of the line that is perpendicular to the graph of each equation and passes through the given point.

1. $y=-5 x+1 ;(2,-1)$
2. $y=2 x-3 ;(-5,3)$
3. $y=-4 x-2 ;(4,-4)$
4. $7 y+4 x=3 ;(-4,-7)$

Q 5: Are the lines L1 and L2 passing through the given pairs of points parallel, perpendicular or neither parallel nor perpendicular?
a. L1: $(1,2),(3,1)$ and L2: $(0,-1),(2,0)$
b. L1: $(0,3),(3,1)$ and L2: $(-1,4),(-7,-5)$
c. L1: $(2,-1),(5,-7)$ and L2: $(0,0),(-1,2)$
d. L1: $(1,0),(2,0)$ and L2: $(5,-5),(-10,-5)$
e. L1: $(-2,5),(-2,7)$ and L2: $(5,1),(5,13)$

Q6: Is it possible for two lines with negative slopes to be perpendicular?

Solution to Q1:

a. The slope of the line is given by
$\mathrm{m}=(5-1) /(4-2)=4 / 2=2$
Since the slope is positive, the line rises as x increases.
b. The slope of the line is given by
$m=(-5-0) /(3-(-1))=-5 / 4$
Since the slope is negative, the line falls as x increases.
c. We first find the slope of the line
$m=(1-1) /(-3-2)=0$
Since the slope is equal to zero, the line is horizontal (parallel to the x axis).
d. The slope of the line is given by
$\mathrm{m}=(-5-2) /(-1-(-1))$
Since $(-1-(-1))=0$ and the division by 0 is not defined, the slope of the line is undefined and the line is vertical. (parallel to the y axis).

Solution to Q5:

In what follows, m 1 is the slope of line L 1 and m 2 is the slope of line L 2 .
a. Find the slope $m 1$ of line $L 1$ and the slope $m 2$ of line $L 1$
$\mathrm{m} 1=(1-2) /(3-1)=-1 / 2$
$\mathrm{m} 2=(0-(-1)) /(2-0)=1 / 2$
The two slopes m 1 and m 2 are not equal and their products is not equal to -1 . Hence the two lines are neither parallel nor perpendicular.
b. $m 1=(1-3) /(3-0)=-2 / 3$
$\mathrm{m} 2=(-5-4) /(-7-(-1))=-9 /-6=3 / 2$
The product of the two slopes $m 1^{*} m 2=(-2 / 3)(3 / 2)=-1$, the two lines are perpendicular.
c. $m 1=(-7-(-1)) /(5-2)=-6 / 3=-2$
$\mathrm{m} 2=(2-0) /(-1-0)=-2$
The two slopes are equal, the two lines are parallel.
d. $m 1=(0-0) /(2-1)=0 / 1=0$
$m 2=(-5-(-5)) /(-10-5)=0 /-15=0$
The two slopes are equal , the two lines are parallel. Also the two lines are horizontal
e. $m 1=(7-5) /(-2-(-2))$
$\mathrm{m} 2=(13-1) /(5-5)$
The two slopes are both undefined since the denominators in both m 1 and m 2 are equal to zero. The two lines are vertical lines and therefore parallel.

Solution to Q6:

No. If both slopes are negative, their product can never be equal to -1 .

