| Important Equations to Memorize |  |  |  |
| :--- | :---: | :---: | :---: |
|  | Slope Between 2 Points | Point-Slope Form | Slope-Intercept Form |
| Equation | $m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}$ | $y-y_{1}=m\left(x-x_{1}\right)$ | $y=m x+b$ |
| When to use | When you need to find <br> the slope, or $m$ | When you're given a <br> point and the slope | When you're given the <br> slope and $y$-intercept |
| Example | Find the slope between <br> $(2,-3) \&(-4,7)$ | Write the eqn of a line <br> with a slope of $2 / 5$ that <br> contains $(5,-7)$ | Write the eqn of a line <br> with a slope of 3 and a <br> y-intercept of $1 / 2$ |
| Answer | $\frac{7-(-3)}{-4-2}=\frac{7+3}{-4-2}=\frac{10}{-6}=-\frac{5}{3}$ | $y-(-7)=\frac{2}{5}(x-5)$ | $y=3 x+\frac{1}{2}$ |

Writing Equations Examples

## Point-Slope Form

Write the equation of a line in point-slope form that contains the point $(8,-3) \&$ a slope of $1 / 2$

$$
\begin{array}{r}
y-(-3)=\frac{1}{2}(x-8) \\
y+3=\frac{1}{2}(x-8)
\end{array}
$$

Write the equation of a line in point-slope form that contains the points $(4,-8) \&(-2,-7)$

$$
\begin{gathered}
m=\frac{-7-(-8)}{-2-4}=\frac{-7+8}{-6}=-\frac{1}{6} \\
y-(-8)=-\frac{1}{6}(x-4) \\
y+8=-\frac{1}{6}(x-4)
\end{gathered}
$$

## Slope-Intercept Form

Write the equation of a line in slope-intercept form with a slope of $-1 / 2$ and a $y$-intercept of 5 .

Write the equation of a line in slope-intercept form that contains the point $(-2,4)$ and a slope of -1 .

Write the equation of a line in slope-intercept form that contains the points $(-5,8) \&(1,2)$.

$$
y=-\frac{1}{2} x+5 \quad \begin{aligned}
& y-4=-1(x-(-2) \\
& y-4=-1(x+2) \\
& y-4=-1 x-2 \\
& y-4+4=-1 x-2+4 \\
& y=-x+2
\end{aligned}
$$

$$
\begin{aligned}
& m=\frac{2-8}{1-(-5)}=\frac{-6}{6}=-1 \\
& y-8=-1(x-(-5) \\
& y-8=-1(x+5) \\
& y-8=-1 x-5 \\
& y-8+8=-x-5+8 \\
& y=-x+3
\end{aligned}
$$

|  | Parallel | Perpendicular | Neither |
| :---: | :---: | :---: | :---: |
| Definition | -Have the SAME slope | -Opposite (+/-) <br> -Reciprocal (flipped fraction) | - All else |
| Examples (look only at slopes to tell if parallel, perp., or neither) | $\mathrm{m}=2 \& \mathrm{~m}=2$ $m=-1 \& m=-1$ | $\begin{aligned} m & =\frac{2}{5} \& m=-\frac{5}{2} \\ m & =-3 \& m=\frac{1}{3} \end{aligned}$ | $\mathrm{m}=2 \& \mathrm{~m}=-2$ (not reciprocals) $m=\frac{2}{5} \& m=\frac{5}{2}$ <br> (not opposite) |
| Given Two Equations (solve for $y=m x+b$ and look at m) | 2) $y-2 x=5$ $\begin{array}{ll} \text { 1) } y=2 x-3 & y-2 x+2 x=5+2 x \\ m=2 & y=2 x+5 \\ & y=2 \end{array}$ | $\begin{array}{ll} \text { 1) } 8 x+5 y=20 & 2) 5 x-8 y=16 \\ 5 y=-8 x+20 & -8 y=-5 x+16 \\ y=-\frac{8}{5} x+4 & y=\frac{5}{8} x-2 \\ m=-\frac{8}{5} & m=\frac{5}{8} \end{array}$ | $\begin{aligned} & \text { 1) } y-2 x=8 \\ & y=2 x+8 \\ & m=2 \end{aligned}$ $\text { 2) } 2 y-x=4$ $2 y=x+4$ <br> Not opposites |

## Practice Problems

1. Write the equation of a line in point-slope form that contains the points $(8,4)$ \& (6,-2).
2. Write the equation of a line in slope-intercept form that contains the points $(8,4) \&$ (6,-2).
3. Write the equation of a line in slope-intercept form that is parallel to the equation $\mathrm{y}=3 \mathrm{x}-2$ and contains the point $(4,-7)$.
[Hint: what does parallel tell you about your slope?]
